• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Школа финансов ВШЭ

119049 Москва, Покровский бульвар, 11,
офис S629.

Телефоны:
+7 (495) 772-95-90*27447, *27190, *27947 (по общим вопросам Школы финансов)
+7 (495) 621-91-92 (по вопросам Бизнес-образования)
+7 (495) 916-88-08 (Магистерская программа "Корпоративные финансы")

E-mail:

df@hse.ru (по общим вопросам Школы финансов),
finance@hse.ru (по вопросам Бизнес-образования)

Руководство
Руководитель Ивашковская Ирина Васильевна

ординарный профессор НИУ ВШЭ, доктор экономических наук, заслуженный работник высшей школы РФ

Школа финансов: Менеджер Непряхина Ульяна Викторовна

+7 495 772 95 90 (доб. 27190)

Школа финансов: Старший администратор Галянина Олеся Владимировна

+7 495-772-95-90 (доб. 27447)

Школа финансов: Администратор Липатова Татьяна Геннадьевна

+7 495-772-95-90 (доб. 27947)

Школа финансов: Администратор Скобелева Ирина Андарбековна

+7 495-772-95-90 (доб. 27946)

Мероприятия
Статья
Resilience Index Development for Digital Ecosystems and Its Implementation: The Case of Russian Companies

Grishunin S., Ivashkovskaya I., Brendeleva N. et al.

Journal of Corporate Finance Research. 2025. Vol. 19. No. 1. P. 25-40.

Глава в книге
Beyond Claims: CSR Reports, ESG Initiatives, and the Consequences of Impressions Management; Empirical Analysis

Badr I., Rawnaa Ibrahim, Hussainey K.

In bk.: Opportunities and Risks in AI for Business Development. Vol. 2: Opportunities and Risks in AI for Business Development. Prt. 636. Springer Cham, 2025. P. 385-399.

Препринт
A New Approach to Identifying Political Connections: Evidence from the Russian Banking Sector

Kozlov N., Semenova M.

Financial Economics. WP HSE. HSE University, 2025. No. 1/FE/2025.

Times Series Econometrics

2024/2025
Учебный год
ENG
Обучение ведется на английском языке
6
Кредиты
Кто читает:
Школа финансов
Статус:
Курс по выбору
Когда читается:
4-й курс, 1, 2 модуль

Преподаватели

Course Syllabus

Abstract

We first review the basics of time series econometrics. Then, in more details, we look at the VAR class of models, including VAR, VARX, VECM, GVAR, and its rather broad application to macroeconomics, including fiscal and monetary policy and some finance applications. After that, we cover ARCH, GARCH with its application to value at risk and contagion. Course Prerequesites: Linear Algebra, Probability Theory, Mathematical Analysis, Basic Econometrics.
Learning Objectives

Learning Objectives

  • The objective of this course is to provide the student with tools for empirical analysis of time series and to show how econometric models can be applied to empirical models in macroeconomics and finance.
Expected Learning Outcomes

Expected Learning Outcomes

  • Apply econometric models to empirical models in macroeconomics and finance
  • Understand the difference between various univariate models, be able to analyze the process and choose an appropriate model.
  • Detect unit roots, understand the difference between stationarity and non-stationarity
  • being able to condust forecasting with ARIMA models
  • Being able to apply various identification schemes to SVAR models, being able to understand how VAR are estimate, how to construct IRF and FEVD
  • Being able to apply obtained knowledge to real-life finance, economics problems
  • Being able to estimate variaous conditional volatility models and apply them to real-life finance problems
Course Contents

Course Contents

  • Introduction/reviewing of time series econometrics
  • Non-stationarity
  • ARIMA
  • Multivariate Time Series Models. VAR
  • VAR applications
  • Modeling the conditional variance (ARCH, GARCH, Multivariate GARCH)
Assessment Elements

Assessment Elements

  • non-blocking Quizzes
  • non-blocking Home assignments
  • non-blocking Big practical group project
  • non-blocking Midterm test
  • non-blocking Final test
Interim Assessment

Interim Assessment

  • 2024/2025 2nd module
    0.25 * Big practical group project + 0.25 * Final test + 0.2 * Home assignments + 0.25 * Midterm test + 0.025 * Quizzes + 0.025 * Quizzes
Bibliography

Bibliography

Recommended Core Bibliography

  • Applied econometric time series, Enders, W., 2004
  • James Douglas Hamilton. (2020). Time Series Analysis. Princeton University Press.

Recommended Additional Bibliography

  • Hamilton, J. D. . (DE-588)122825950, (DE-576)271889950. (1994). Time series analysis / James D. Hamilton. Princeton, NJ: Princeton Univ. Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edswao&AN=edswao.038453134

Authors

  • KARAMYSHEVA MADINA RINATOVNA