• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Contacts

119049 Moscow, Russia
11 Pokrovskiy boulevard, room S629

Phone:

+7 (495) 772-95-90*27447, *27947, *27190
+7 (495) 916-88-08 (Master’s Programme Corporate Finance)

- Email: df@hse.ru

finance@hse.ru 

Administration
Head of the School Irina Ivashkovskaya

Head of Corporate Finance Research Center, Dr., tenured professor

Manager Uliana Nepryakhina

+7 495-772-95-90 (add. 27190)

Senior Administrator Olesya Galyanina

+7 495-772-95-90 (add. 27447)

Administrator Tatyana Lipatova

+7 495-772-95-90 (add. 27947)

Administrator Valentina Chaus

+7 495-772-95-90 (add. 27946)

Article
Investment in ESG Projects and Corporate Performance of Multinational Companies

Cherkasova V. A., Nenuzhenko I.

Journal of Economic Integration. 2022. Vol. 37. No. 1. P. 54-92.

Article
Bankruptcy factors at different stages of the lifecycle for Russian companies

Zelenkov Y., Fedorova E.

Electronic Journal of Applied Statistical Analysis. 2022. Vol. 15. No. 1. P. 187-210.

Working paper
Do Non-Interest Income Activities Matter For Banking Sector Efficiency? A Net Interest Margin Perspective

Kolade S. A., Semenova M.

Financial Economics. FE. Высшая школа экономики, 2022. No. WP BRP 87/FE/2022.

Book chapter
Validation of the effectiveness of the bank retail portfolio risk management procedure

Pomazanov M. V.

In bk.: The 8th International Conference on Information Technology and Quantitative Management (ITQM 2020 & 2021): Developing Global Digital Economy after COVID-19. Vol. 199: The 8th International Conference on Information Technology and Quantitative Management (ITQM 2020 & 2021): Developing Global Digital Economy after COVID-19. Manchester: Elsevier, 2022. P. 798-805.

Article
CEO Power and Risk-taking: Intermediate Role of Personality Traits

Korablev D., Poduhovich D.

Journal of Corporate Finance Research. 2022. Vol. 16. No. 1. P. 136-145.

Article
Economic Growth Models and FDI in the CIS Countries During the Period of Digitalization

Olkhovik V., Lyutova O. I., Juchnevicius E.

Научно-исследовательский финансовый институт. Финансовый журнал. 2022. Vol. 14. No. 2. P. 73-90.

Article
Special issue with the 2019 Future Directions in Accounting and Finance Education Conference, Moscow, Russia

Churyk N. T., Anna Vysotskaya, Kolk B. v.

Journal of Accounting Education. 2022. Vol. 58.

Book
Тенденции развития интернета: от цифровых возможностей к цифровой реальности

Абдрахманова Г. И., Васильковский С. А., Вишневский К. О. и др.

М.: Национальный исследовательский университет "Высшая школа экономики", 2022.

Article
Разработка рейтинга проектных рисков для телекоммуникационной компании

Гришунин С. В., Сулоева С. Б., Пищалкина И. И.

Организатор производства. 2022. Т. 30. № 1. С. 60-72.

Article
Разработка механизма гибкого управления рисками в сфере телекоммуникаций

Гришунин С. В., Сулоева С. Б., Пищалкина И. И.

Экономический анализ: теория и практика. 2022. Т. 21. № 3. С. 478-496.

Article
Development of the horizon index to evaluate long-termism of Russian non-financial companies

S. Grishunin, E. Naumova, N. Lukshina et al.

Russian Management Journal. 2021. Vol. 19. No. 4. P. 475-493.

Book chapter
Analysing the Determinants of Insolvency and Developing the Rating System for Russian Insurance Companies

Grishunin S., Bukreeva Alesya, Alyona A.

In bk.: The 8th International Conference on Information Technology and Quantitative Management (ITQM 2020 & 2021): Developing Global Digital Economy after COVID-19. Vol. 199: The 8th International Conference on Information Technology and Quantitative Management (ITQM 2020 & 2021): Developing Global Digital Economy after COVID-19. Manchester: Elsevier, 2022. P. 190-197.

Book
International Conference “Future Directions in Accounting and Finance Education”, 27-28 May 2019, Moscow, Russia

Edited by: А. Б. Высотская, B. v. Kolk.

Vol. 58. Elsevier, 2022.

Article
Prudential policies and systemic risk: The role of interconnections

Karamysheva M., Seregina E.

Journal of International Money and Finance. 2022. Vol. 127.

Article
How do fiscal adjustments work? An empirical investigation
In press

Karamysheva M.

Journal of Economic Dynamics and Control. 2022. Vol. 137.

Article
Do we reject restrictions identifying fiscal shocks? identification based on non-Gaussian innovations

Karamysheva M., Skrobotov A.

Journal of Economic Dynamics and Control. 2022. Vol. 138.

Article
ЛАТИНОАМЕРИКАНСКАЯ ТЕОЛОГИЯ ОСВОБОЖДЕНИЯ: ЭКОНОМИЧЕСКИЕ ПРЕДПОСЫЛКИ, СОСТОЯНИЕ, ОПЫТ ПРАВОСЛАВНОЙ РЕФЛЕКСИИ

Тихомиров Д. В.

Известия Санкт-Петербургского государственного экономического университета. 2022. № 4. С. 144-155.

Article
Проблема эндогенности в корпоративных финансах: теория и практика

Селезнёва З. В., Евдокимова М. С.

Финансы: теория и практика. 2022. Т. 26. № 3. С. 64-84.

Book chapter
Students’ Survey: Propensity to Innovate

Evdokimova M., Stepanova A. N.

In bk.: 38th EBES Conference - Program and Abstract Book. Istanbul: EBES, 2022. P. 39.

Article
Prove them wrong: Do professional athletes perform better when facing their former clubs?

Assanskiy A., Shaposhnikov D., Tylkin I. et al.

Journal of Behavioral and Experimental Economics. 2022. Vol. 98.

Article
Black-Litterman model with copula-based views in mean-CVaR portfolio optimization framework with weight constraints

Teplova T., Mikova E., Munir Q. et al.

Economic Change and Restructuring. 2023. Vol. 56. No. 1. P. 515-535.

Article
Институциональные инвесторы, инвестиционный горизонт и корпоративное управление

Повх К. С., Кокорева М. С., Степанова А. Н.

Экономический журнал Высшей школы экономики. 2022. Т. 26. № 1. С. 9-36.

Article
Credit scoring methods: latest trends and points to consider

Anton Markov, Zinaida Seleznyova, Victor Lapshin.

Journal of Finance and Data Science. 2022. Vol. 8. P. 180-201.

Big Data Analysis in Insurance

2024/2025
Academic Year
RUS
Instruction in Russian
3
ECTS credits
Delivered by:
School of Finance
Type:
Elective course
When:
4 year, 3 module

Instructors

Программа дисциплины

Аннотация

Целью учебной дисциплины «Анализ больших данных в страховании» является ознакомление бакалавров с современными методами работы с данными в страховании на разных этапах жизненного цикла страхового продукта, изучение их возможностей и ограничений, получение представления об особенностях задач анализа данных в страховании и навыков построения моделей с использованием языка Python.
Цель освоения дисциплины

Цель освоения дисциплины

  • Целью учебной дисциплины «Анализ больших данных в страховании» является ознакомление бакалавров с современными методами работы с данными в страховании на разных этапах жизненного цикла страхового продукта, изучение их возможностей и ограничений, получение представления об особенностях задач анализа данных в страховании и навыков построения моделей с использованием языка Python.
Планируемые результаты обучения

Планируемые результаты обучения

  • Знать структуру и состав данных в страховании
  • Знать форматы данных, возникающих в страховых задачах
  • Владеет навыками постановки задач
  • Умеет формировать структуру данных и моделей
  • Знает методы и модели, применяемые в целях анализа
  • Умеет применять модели к различным данным, анализировать получаемые результаты
  • Умеет использовать Python для моделирования
  • Знает подходы к оптимизации/модификации данных и моделей
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Тема 1. Структуры данных в страховании.
  • Тема 2. Постановка задачи и формирование структуры для последующего анализа
  • Тема 3. Обзор моделей машинного обучения, применяемых для решения различных задач в страховании. (параметрические и непараметрические методы)
  • Тема 4. Введение дополнительных параметров в модели
Элементы контроля

Элементы контроля

  • неблокирующий Экзамен
    Включены все темы, рассматриваемые на лекциях и семинарах.
  • неблокирующий Проект
    Задание для самостоятельной работы выдается на группу из 2-3 студенто. Сутью задания является решение задачи с использованием языка Python. Задание выдается в виде документа «Описание проекта», в котором зафиксированы требования к результату, а также критерии оценивания. В отдельных случаях, при наличии у студента знаний в области анализа данных на языке Python и страхования, по согласованию с преподавателем, студент может выполнить задание по индивидуальному заданию повышенной сложности. В этом случае оценка за курс (промежуточная аттестация) проставляется по результатам оценивания его проекта (вес=0,7) + результат экзамена (вес=0,3), он освобождается от других элементов контроля.
  • неблокирующий Активность на семинарах - периодический контроль в форме тестов
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 3rd module
    0.2 * Активность на семинарах - периодический контроль в форме тестов + 0.5 * Проект + 0.3 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Введение в эконометрику : учебник для вузов, Доугерти, К., 2010
  • Путеводитель по современной эконометрике : учеб.- метод. пособие для вузов, Вербик, М., 2008

Рекомендуемая дополнительная литература

  • Практическая эконометрика в кейсах : учеб. пособие / В.П. Невежин, Ю.В. Невежин. — М. : ИД «ФОРУМ» : ИНФРА-М, 2019. — 317 с. + Доп. материалы [Электронный ресурс; Режим доступа: http://www.znanium.com]. — (Высшее образование: Бакалавриат). — www.dx.doi.org/10.12737/20052.

Авторы

  • Чулков Сергей Павлович
  • Полякова Марина Васильевна