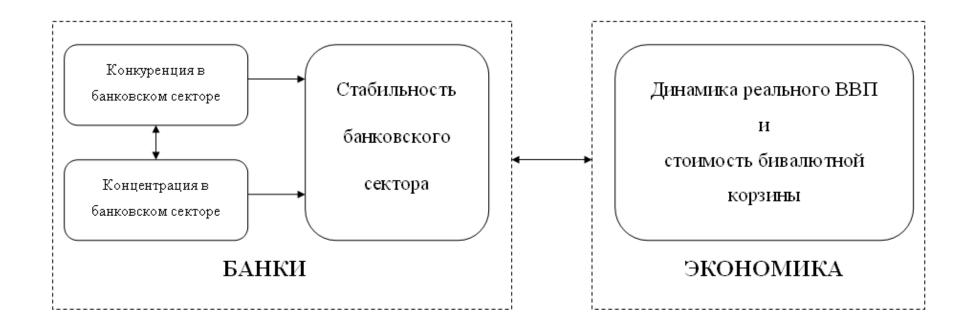
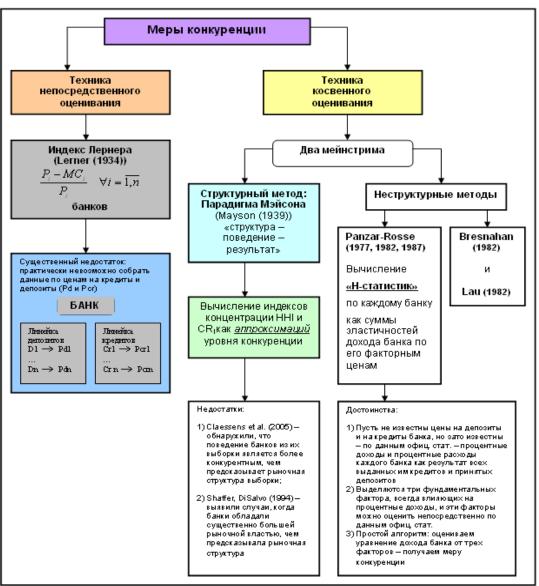


ЦЕНТР МАКРОЭКОНОМИЧЕСКОГО АНАЛИЗА И КРАТКОСРОЧНОГО ПРОГНОЗИРОВАНИЯ

Тел.: (499)129-17-22, факс: (499)129-09-22, e-mail: mail@forecast.ru, http://www.forecast.ru


Конкуренция в российском банковском секторе: построение моделей и анализ влияния кризиса

Михаил Мамонов, эксперт Центра макроэкономического анализа и краткосрочного прогнозирования


План

- 1. Постановка проблемы
- 2. Способы измерения конкуренции: предпочтительность подхода Панзара-Роуза
- 3. Определение H-stat в подходе Панзара-Роуза (1987)
- 4. Спецификация уравнения дохода Панзара-Роуза
- 5. Индикатор адекватности H-stat Панзара-Роуза: подход Шаффера (1982)
- 6. Формирование базы данных по российским банкам
- 7. Оценка уравнения дохода Панзара-Роуза на российских данных (I кв. 2004 II кв. 2011)
- 8. Тесты на тип рыночной структуры (на основе расчетной H-stat)
- Оценка H-stat для различных групп банков
- 10. Оценка уравнения прибыльности активов Шаффера на российских данных (I кв. 2004 II кв. 2011)
- оценка динамической версии уравнения дохода как альтернатива статической версии: применение метода Ареллано-Бонда оценки моделей с динамическими панельными данными
- 12. Оценка влияния различных факторов на уровень конкуренции: коинтеграционный анализ

Постановка проблемы

Способы измерения конкуренции: предпочтительность подхода Панзара-Роуза

Определение Н-статистик в подходе Панзара-Роуза (1987)

Пусть:

- 1. TR(y, n, z) общий доход банка
- 2. TC(y, w, t) общие издержки банка

Тогда $\pi(y,z,w,t) = TR(y,n,z) - TC(y,w,t)$ - прибыль банка.

- 1. y^0 решение $\pi(y, z, w, t) \to \max_{\{y\}}$, где $y^0 = y^0(w, n, z, t)$
- 2. «уравнение дохода в редуцированной форме» есть $TR^0 = TR^*(w,n,z,t)$

Teopema PR1. Сумма эластичностей факторных цен для монополиста является отрицательной величиной.

$$\boldsymbol{H}_{mon} = \sum_{i=1}^k \frac{\boldsymbol{w}_i}{T\boldsymbol{R}^*} \cdot \frac{\partial T\boldsymbol{R}^*}{\partial \boldsymbol{w}_i} \leq 0 \; ,$$

где k - число факторных цен, причем «Индекс Лернера» рыночной власти монополиста есть

$$L = \frac{H_{mon}}{H_{mon} - 1} > 0$$

Teopema PR2. В условиях равновесия сумма эластичностей факторных цен для типичной фирмыконкурента лежит в интервале от нуля до единицы.

$$0 < H_{con} = \sum_{i=1}^{k} \frac{w_i}{TR^*} \cdot \frac{\partial TR^*}{\partial w_i} \le 1.$$

Вывод: рыночная власть измеряется той степенью, с которой изменение факторных цен ∂w_i отражается в изменении дохода в редуцированной форме ∂TR^* , полученного банком с номером i.

Спецификация уравнения дохода Панзара-Роуза

$$\begin{split} &\ln II_{i,t} = \alpha_i + \beta \cdot FIP_{i,t} + \gamma \cdot EXOG_{i,t} + \delta \cdot \ln TA_{i,t} + \varepsilon_{i,t} = \alpha_i + \beta_1 \cdot \ln AFR_{i,t} + \beta_2 \cdot \ln PPE_{i,t} + \beta_3 \cdot \ln PONILE_{i,t} \\ &+ \gamma_1 \cdot \ln \frac{OI_{i,t}}{II_{i,t}} + \gamma_2 \cdot \ln \frac{EQ_{i,t}}{TA_{i,t}} + \gamma_3 \cdot \ln \frac{LNS_{i,t}}{TA_{i,t}} + \gamma_4 \cdot \ln \frac{ERA_{i,t}}{ERP_{i,t}} + \gamma_5 \cdot \ln \frac{ONEA_{i,t}}{TA_{i,t}} + \gamma_6 \cdot \ln \frac{DPS_{i,t}}{F_{i,t}} + \delta \cdot \ln TA_{i,t} + \varepsilon_{i,t} \ (1) \end{split}$$

Factor Input Prices (FIP)	EXOG
AFR (Average Funding Rate) — отношение процентных расходов к привлеченным средствам	$\frac{{OI_{i,t}}}{{II_{i,t}}}$ — отношение прочих доходов (общие минус процентные) к процентным
	доходам.
	$rac{E\mathcal{Q}_{i,t}}{TA_{i,t}}$ — отношение собственного капитала к активам.
PPE (Price of Personnel Expense) — отношение расходов на персонал к совокупным активам	$\frac{LNS_{i,t}}{TA_{i,t}}$ — отношение кредитов населению и нефинансовым предприятиям к
	активам.
	$\frac{ERA_{i,t}}{ERP_{i,t}}$ — отношение платных активов (Earning Assets) к платным пассивам (Earning
	Passives).
PONILE (Price of Other Non-interest and non-	ONEA _{i,t} — отношение прочих неплатных активов к активам.
personnel expenses) – отношение прочих	TA _{1,t}
(непроцентных и нетрудовых) расходов к	$\frac{DPS_{i,t}}{F_{i,t}}$ — отношение депозитов населения и нефинансовых предприятий к их
совокупным активам	счетам и депозитам.

> TA (Total Assets) – совокупные активы. Масштабирующая переменная.

$$arepsilon_{i,t}$$
 – $ii.d.(o,\sigma^2)$
$$H_{stat} = eta_1^{II} + eta_2^{II} + eta_3^{II} = egin{cases} \leq 0 \Rightarrow \text{монополия} \\ \in (0;1) \Rightarrow \text{монополистическая конкуренция} \end{cases}$$

=1 ⇒ совершенная конкуренция

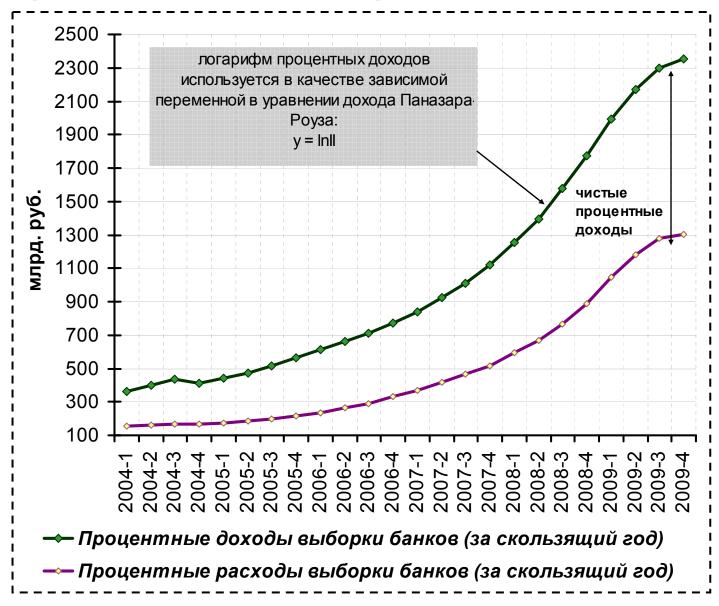
ЦМАКП 6

Индикатор адекватности H-stat Панзара-Роуза: подход Шаффера (1982)

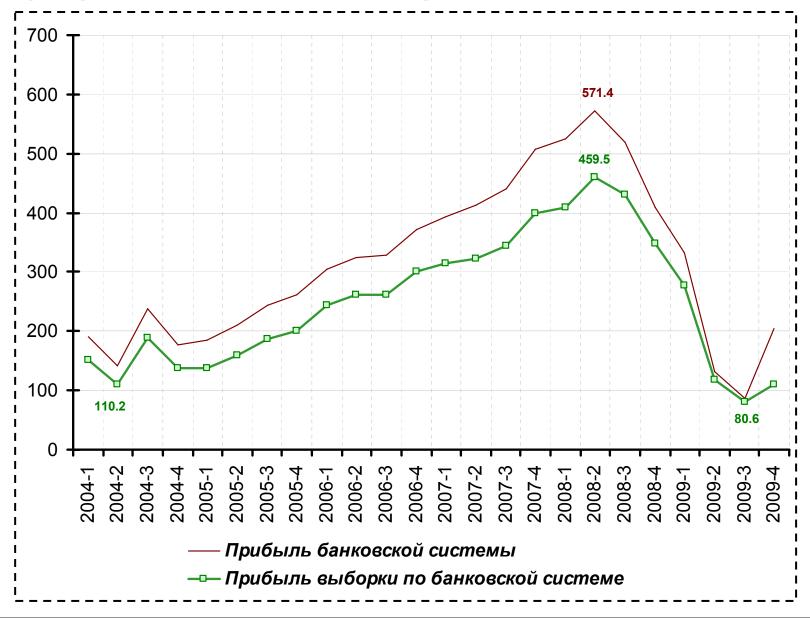
Идея: если банки постоянно находятся в состоянии конкуренции, то эта конкуренция должна привести к устранению диспропорций в распределении риска между банками в равновесии. Значит, уровень прибыли банков (ROA) должен не тесно коррелировать с факторными ценами (FIP), отражающими индивидуальные уровни рисков: $Corr(ROA; FIP) \approx 0$.

Уравнение (1), в котором зависимая переменная $\ln II_{i,t}$ замещена на переменную $\ln ROA_{i,t} = \ln \frac{\Pr ofit_{i,t}}{TA_{i,t}} \,,$ отражающую прибыльность активов.

$$\begin{split} &\ln ROA_{i,t} = \alpha_i + \beta \cdot FIP_{i,t} + \gamma \cdot EXOG_{i,t} + \delta \cdot \ln TA_{i,t} + \varepsilon_{i,t} = \alpha_i + \beta_1 \cdot \ln AFR_{i,t} + \beta_2 \cdot \ln PPE_{i,t} + \beta_3 \cdot \ln PONILE_{i,t} \\ &+ \gamma_1 \cdot \ln \frac{OI_{i,t}}{II_{i,t}} + \gamma_2 \cdot \ln \frac{EQ_{i,t}}{TA_{i,t}} + \gamma_3 \cdot \ln \frac{LNS_{i,t}}{TA_{i,t}} + \gamma_4 \cdot \ln \frac{ERA_{i,t}}{ERP_{i,t}} + \gamma_5 \cdot \ln \frac{ONEA_{i,t}}{TA_{i,t}} + \gamma_6 \cdot \ln \frac{DPS_{i,t}}{F_{i,t}} + \delta \cdot \ln TA_{i,t} + \varepsilon_{i,t} \left(1\right) \end{split}$$


$$E_{\mathit{stat}} = eta_1^{\mathit{ROA}} + eta_2^{\mathit{ROA}} + eta_3^{\mathit{ROA}} = egin{cases} = 0 \Rightarrow \mathit{банковская} \ \mathit{система} \ \mathit{в} \ \mathit{равновесии} \Rightarrow H_{\mathit{stat}} \ \mathit{адекватны} \ \neq 0 \Rightarrow \mathit{иначe} \end{cases}$$

ЦМАКП 7


Формирование базы данных по российским банкам

Источники данных:	Форма 101	Форма 102		
Информация, содержащаяся в формах: счета первого и второго порядков по каждому банку, на основе которых формируются показатели	актива и пассива банков	доходов, расходов и прибыли банков		
Ключевые агрегаты, рассчитываемые на основе форм	Актив: кредиты, приобретенные ценные бумаги, иностранные активы, абсолютно ликвидные активы и прочие. Пассив: привлеченные средства, выпущенные ценные бумаги, иностранные пассивы и прочие	Доходы: процентные доходы, операционные доходы (от операций с ценными бумагами и от участия в капитале других организаций, а также положительная переоценка), прочие доходы (штрафы, пени, неустойки и др.) Расходы: процентные расходы, операционные расходы (по операциям с ценными бумагами, расходы на персонал, расходы на физический капитал, а также отрицательная переоценка), прочие расходы		
Периодичность	Ежемесячно	Ежеквартально		
Доступность на сайте Банка России	С января 2004 г.	С 1 квартала 2004 г.		
Объем «постоянной» выборки банков	525 банков, доля в активах банковской системы составляет порядка 85%. При этом 90% выборки занимают 51 крупных банка (активы более 50 млрд. руб.)			

Формирование базы данных по российским банкам

Формирование базы данных по российским банкам

Модель по объединенным данным (pooled regression)

'	ss		MS		Number of obs :	= 12033
+-					F(13, 12019)	=81425.14
Model	45122.6388	13 347	0.97221		Prob > F	= 0.0000
Residual	512.343188	12019 .04	2627772		R-squared	= 0.9888
					Adj R-squared	= 0.9888
Total	45634.982	12032 3.7	9280103		Root MSE	= .20646
lnii	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnafr	.1319223	.0031498	41.88	0.000	.1257482	.1380964
lnonile_to~t	.385831	.0045559	84.69	0.000	.3769007	.3947613
lnpe_to_ta	.1262792	.0033205	38.03	0.000	.1197705	.132788
lnoi_to_ii	5560913	.0056849	-97.82	0.000	5672347	544948
lneq_to_ta	.048785	.0043848	11.13	0.000	.04019	.05738
lnlns_to_ta	.1499157	.0041066	36.51	0.000	.1418661	.1579653
lnonea_to_ta	0651095	.004441	-14.66	0.000	0738146	0564045
lndps_to_f	.0019953	.0028525	0.70	0.484	0035961	.0075868
lnera_to_erp	.0144576	.0035283	4.10	0.000	.0075416	.0213736
lnta	1.00933	.0015278	660.62	0.000	1.006335	1.012325
dgos	.031231	.0165774	1.88	0.060	0012633	.0637253
dforgn	.1048066	.0089955	11.65	0.000	.087174	.1224392
dmosc	.0752576	.0051172	14.71	0.000	.065227	.0852882
_cons	-3.953045	.0311265	-127.00	0.000	-4.014058	-3.892032

Модель с фиксированными эффектами (fixed effects)

					of obs = of groups =	
	= 0.9459 = 0.9913 = 0.9878			Obs per	group: min = avg = max =	23
corr(u_i, Xb)	= 0.5072			F(10,11 Prob >	503) = F =	20118. 0.00
lnii	Coef.	Std. Err.	t	P> t	[95% Conf.	Interva
lnafr	.1243493	.0029598	42.01	0.000	.1185475	.13015
lnonile_to~t		.004505	87.51	0.000	.3854021	.40306
lnpe_to_ta	.1782619	.0039579	45.04	0.000	.1705038	.186
lnoi_to_ii		.0059008	-93.01	0.000	560386	5372
lneq_to_ta	.0589371	.0052262	11.28	0.000	.0486928	.06918
lnlns_to_ta	.117749		27.97	0.000	.1094982	.12599
lnonea_to_ta		.0042936		0.000		02460
lndps_to_f		.0029322		0.002	.0035547	
lnera_to_erp		.0033925			.0034295	
lnta		.0025639	380.30	0.000	.9700333	.98008
dgos						
	(dropped)					
dmosc						
_cons	-4.016155	.0301745	-133.10 	0.000 	-4.075302 	-3.9570
	.20383692					
sigma_e	.14605835					
rho	.66074773	(fraction	of varia	nce due t	o u_i)	
F test that al	1 i=0.	E/510 115			Duels >	=======

Модель со случайными эффектами (random effects)

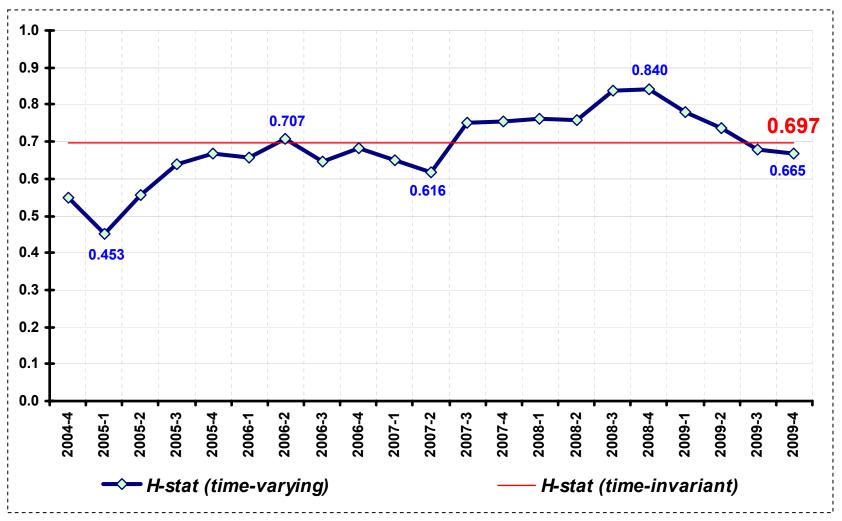
	dom-effects GLS regression up variable: regn_id				of obs = of groups =	
R-sq: within = 0.9459 between = 0.9915 overall = 0.9882				Obs per	group: min = avg = max =	23.1
—			Wald ch Prob >		268072.42 0.0000	
lnii	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
lnafr	.125911	.0029273	43.01	0.000	.1201736	.1316484
lnonile_to~t		.0044272	89.08	0.000	.3857066	.4030609
lnpe_to_ta	.1720423	.0038478	44.71	0.000	.1645009	.1795838
lnoi_to_ii		.005784	-95.53	0.000	563884	5412113
lneq_to_ta	.0587334	.0050758	11.57	0.000	.0487849	.0686819
lnlns_to_ta	.1235989	.0041415	29.84	0.000	.1154817	.131716:
lnonea_to_ta		.0042422	-8.81	0.000	0456949	0290659
lndps_to_f		.0028853	3.40	0.001	.0041442	.015454
lnera_to_erp		.0033452	2.61	0.009	.0021784	.0152915
lnta			422.61	0.000	.9805052	.9896423
dgos		.0596754	3.18	0.001	.0729887	.306912
dforgn		.031735	4.68	0.000	.086179	.2105777
dmosc cons		.0163331 .0310439	5.89 -130.91	0.000 0.000	.0641331 -4.124772	.1281576 -4.003082
sigma_u sigma_u sigma_e	.15954862 .14605835					
rho I	.54405671	(fraction	of varia	nce due t	o u il	

«Случайные эффекты» против «объединенной выборки»: тест Хаусмана

. hausman fixed

	Coeffi	cients		
1	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	fixed		Difference	S.E.
lnafr	.1243493	.125911	0015617	.0004377
lnonile_to~t	.3942327	.3943838	0001511	.0008336
lnpe to ta	.1782619	.1720423	.0062196	.0009271
lnoi_to_ii	5488195	5525476	.0037281	.0011682
lneq_to_ta	.0589371	.0587334	.0002037	.0012447
lnlns_to_ta	.117749	.1235989	0058499	.0007517
lnonea_to_ta	0330249	0373804	.0043555	.0006626
lnera_to_erp	.0100794	.008735	.0013444	.0005644
lndps to f	.0093023	.0097993	000497	.0005222
lnta	.975059	.9850738	0100147	.001068

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg


Test: Ho: difference in coefficients not systematic

chi2(10) = $(b-B)'[(V_b-V_B)'(-1)](b-B)$ = 547.98

Prob>chi2 = 0.0000

Модель с «фиксированными эффектами» адекватнее

Сопоставление time-invariant и time-varying H-stat (в рамках модели с «фиксированными эффектами»)

$$H_{stat} = 0.124 + 0.394 + 0.178 = 0.697$$

ЦМАКП 15

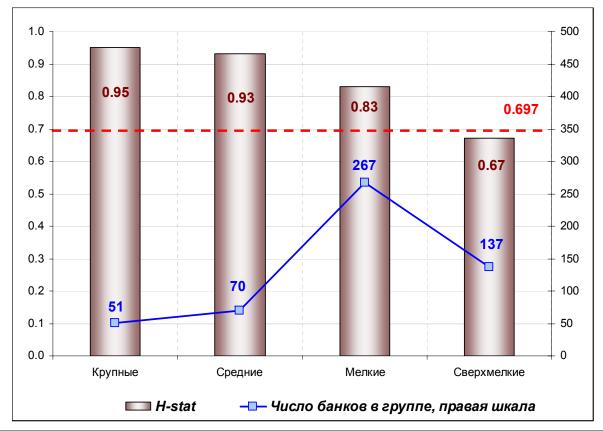
Тесты на тип рыночной структуры (на основе расчетной H-stat)

Стандартный набор тестов Вальда на линейное ограничение:

1. Совершенная конкуренция – отвергается на 1% уровне

$$H_0: H_{stat} = 1$$
 VS $H_{alt}: H_{stat} \neq 1$ — двусторонний тест $F(1,11503) = 3409.40$, Prob > $F = 0.0000$

2. Монополия - отвергается на 1% уровне


$$H_0: H_{\it stat} = 0$$
 VS $H_{\it alt}: H_{\it stat} \neq 0$ — двусторонний тест
 $F(1,11503) = 18014.27$, $Prob > F = 0.0000$

3. Монополистическая конкуренция - не отвергается на 1% уровне

Оценка H-stat для различных групп банков

По критерию величины совокупных активов вся выборка из 525 банков может быть условно разделена на четыре группы:

- 1) крупные с активами более 50 млрд. руб.,
- 2) средние с активами от 10 до 50 млрд. руб.,
- 3) мелкие с активами от 1 до 10 млрд. руб.,
- 4) сверхмелкие с активами менее 1 млрд. руб.

Оценка уравнения прибыльности активов на основе подхода Шаффера по российским данным (I кв. 2004 – IV кв. 2009)

```
Fixed-effects (within) regression
                                           Number of obs
Group variable: regn id
                                           Number of groups =
R-sq: within = 0.0154
                                           Obs per group: min =
      between = 0.0707
                                                         avg = 21.3
      overall = 0.0313
                                                         max = 24
                                          F(6,10579)
                                                          = 27.59
corr(u i, Xb) = -0.0033
                                           Prob > F
                                                           = 0.0000
                                       t P>|t|
      lnafr | -.105737 .0172876 -6.12 0.000
                                                    -.1396239
                                                               -.07185
lnonile to~t | .1480999 .029293 5.06 0.000 .0906802 .2055197
 lnpe_to_ta | .0349798   .0254505    1.37    0.169    -.0149081   .0848676
lnoi_to_ii | -.1785192   .0380973    -4.69    0.000    -.253197   -.1038415
 lneq to ta | .264581 .0301967 8.76 0.000 .2053898 .3237723
lnonea to ta | -.132246 .025865 -5.11 0.000 -.1829463 -.0815458
      cons | -1.236667 .1312728 -9.42 0.000 -1.493986 -.9793472
    sigma u | .5417489
    sigma e | .90930125
     rho | .26197131 (fraction of variance due to u_i)
F test that all u i=0: F(521, 10579) = 7.42 Prob > F = 0.0000
```

$$E_{stat} = -0.106 + 0.148 + 0.035 = 0.077$$

```
. test lnafr+lnonile_to_phys_act+lnpe_to_ta=0
F(1,10579)= 5.26, Prob > F = 0.0219
. test lnafr+lnonile_to_phys_act=0
```

F(1,10579) = 2.21, Prob > F = 0.1368

Оценка динамической версии уравнения дохода как альтернатива статической версии (№1)

Предыстория:

- до Goddard et al. (2006) оценка H-stat проводилась на основе статической версии уравнения дохода
- Goddard et al. (2006) впервые ввел в рассмотрение динамическую версию уравнения дохода
 Панзара-Роуза. На ее основе одновременно вычисляются H-stat и делается вывод о
 равновесии / неравновесии банковской системы на основе использования метода
 Ареллано-Бонда.

 \underline{Memod} : Линейные динамические модели на панельных данных (LDPD-models) включают в состав независимых переменных p лагов зависимой переменной и содержат ненаблюдаемые панельные эффекты, фиксированные или случайные. По построению, эти эффекты коррелируют с лагированной зависимой переменной, что приводит к несостоятельным оценкам коэффициентов. Arellano, Bond (1991) получили состоятельный способ оценивания таких моделей на основе применения Обобщенного Метода Моментов (ОММ, GMM).

Оценка динамической версии уравнения дохода как альтернатива статической версии (№2)

```
\Delta \ln II_{i,t} = \alpha_i + \theta \cdot \Delta \ln II_{i,t-1} + \beta \cdot \Delta FIP_{i,t} + \gamma \cdot \Delta EXOG_{i,t} + \delta \cdot \Delta \ln TA_{i,t} + \Delta \varepsilon_{i,t}
Arellano-Bond dynamic panel-data estimation Number of obs
                                                                      10439
Group variable: reqn id
                                           Number of groups
                                                                        518
Time variable: quart
                                           Obs per group:
                                                             avg = 20.15251
                                                             max =
Number of instruments = 32
                                         Wald chi2(11)
                                                                     126.84
                                          Prob > chi2
                                                                     0.0000
Two-step results
                           WC-Robust
                Coef. Std. Err. z P>|z| [95% Conf. Interval]
     dlniii |
     dlniii |
        L1. | -.0641537 .034965 -1.83 0.083
                                                       -.1326934
                                                                   .0043782
               .0380487 .011491 3.31 0.001
                                                    .0155268
     dlnafr |
                                                                   .0605707
dlnonile t~t | .3068993 .0451241 6.80 0.000
                                                                 .3953408
                                                    .2184577
                                                     .1263474
dlnpe to ta |
               .2045604 .0399053 5.13 0.000
                                                                   .2827734
dlnoi to ii |
               -.433726
                          .056345
                                   -7.70 0.000
                                                       -.5441602
                                                                 -.3232918
                .0146803 .0101599
                                    1.44 0.148
                                                       -.0052326
dlneq to ta |
                                                                   .0345933
dlnlns to ta |
               .0605805 .0171804
                                    3.53 0.000
                                                     .0269074
                                                                  .0942535
dlnonea to~a |
               -.0382345
                          .0093535
                                    -4.09 0.000
                                                     -.0565672
                                                                 -.0199019
               .0108261 .0067607 1.60 0.109
                                                     -.0024246
dlnera to ~p |
                                                                  .0240768
dlndps to f |
               .0131191 .0046829 2.80 0.005
                                                     .0039407
                                                                 .0222975
      dlnta |
               .5246105 .0616901 8.50 0.000
                                                       .4037
                                                                  .6455209
       cons | .0315954 .0049669
                                    6.36 0.000
                                                        .0218605
                                                                   .0413303
Instruments for differenced equation
       GMM-type: L(2/2).dlniii
        Standard: D.dlnafr D.dlnonile to phys act D.dlnpe to ta D.dlnoi to ii
                 D. dlneq to ta D. dlnlns to ta D. dlnonea to ta D. dlnera to erp
                 D.dlndps to f D.dlnta
Instruments for level equation
       Standard: cons
```

$$H_{stat} = \frac{0.038 + 0.307 + 0.205}{1 - (-0.064)} = 0.516$$

ЦМАКП 20

Оценка динамической версии уравнения дохода как альтернатива статической версии (№3)

Тестирование авторегрессии в остатках

. estat abond, artests(4)

Arellano-Bond test for zero autocorrelation in first-differenced errors

+		+
Order	l z	Prob > z
	-+	
1	-6 . 6136	0.0000
1 2	-1.0851	0.2779
1 3	3.3937	0.0007
4	1-2.6973	0.0070
+		+

H0: no autocorrelation

Вывод: в остатках обнаружена авторегрессия вплоть до четвертого порядка (четыре квартала), AR(4)

Тест сверхидентифицируемых ограничений Хансена

. estat sargan

Вывод: к сожалению, нулевая гипотеза об эффективном использовании всей полноты матрицы инструментальных переменных отвергнута. Следовательно — хотя оценки коэффициентов значимы и удовлетворяют экономическим соображениям — они неединственны. Необходимо искать более удачный способ использования инструментальных переменных.

Конкуренция VS Концентрация: модели

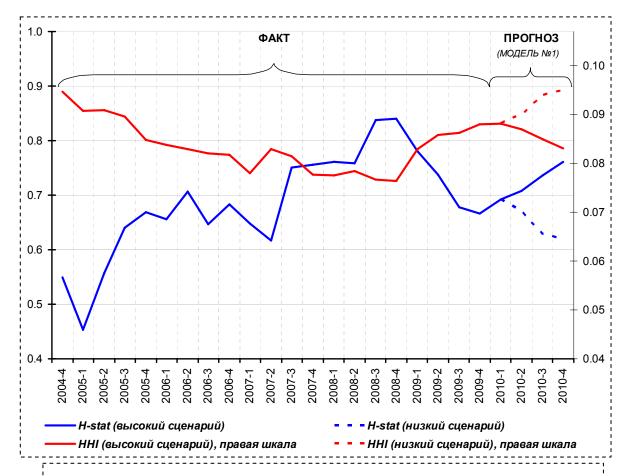
Зависимая переменная	H-stat					
Модель	Модель №1 « дочерних нерезиде	банков	Модель №2. «Влияние соотношения процентных доходов и процентных расходов»			
Факторы	оценки коэф-ов	p-value	оценки коэф-ов	p-value		
<i>HHI</i> (-1)	-10.696	0.0001	-12.239	0.0001		
FASS(-1)	0.037	0.0012				
II(-1)/IE(-1)			-0.111	0.0305		
Constant	1.512	0.0000	1.962	0.0000		
R_{adj}^2	0.76	0.764		3		
Число	21		21			
наблюдений Fisher-stat	33.462	0.000001	21.583	0.000017		
DW-stat	1.897		1.711			
Breusch-Godfrey LM Stat:	1.752	0.7813	1.344546	0.8538		

	H_STAT	HHI(-1)	II_TO_IE(-1)	FASS(-1)
H_STAT	1.000000	-0.784562	-0.549726	0.708414
HHI(-1)	-0.784562	1.000000	0.340839	-0.423325
II(-1)/IE(-1)	-0.549726	0.340839	1.000000	-0.955514
FASS(-1)	0.708414	-0.423325	-0.955514	1.000000

Конкуренция VS Концентрация: коинтеграция

	Порядок интегрируемости (ADF-test)	Критический уровень	Число значимых лагов
H-stat	I(1)	10%	0
HHI	I(1)	10%	0
II/IE	I(1)	10%	0
FASS	I(1)	10%	0

1) Ряды интегрируемы одного порядка – I(1)


Null Hypothesis: RES ha						
Exogenous: Constant						
Lag Length: 0 (Automatic based on SIC, MAXLAG=4)						
			t-Statistic	Prob.*		
Augmented Dickey-Fulle		-4.189029	0.0044			
Test critical values:	1% level		-3.808546			
	5% level		-3.020686			
	10% level		-2.650413			

2) Остатки модели №1 стационарны (крит. знач. статистики Маккиннона-Дэвидсона для модели из 3 переменных на 5% уровне значимости составляет -3.74)

3) В модели коррекции ошибок коэффициент при RES(-1) отрицательный и статистически значимый

23

Конкуренция VS Концентрация: прогноз на 2010 г. (в рамках модели №1)

оценки эластичностей конкуренции по факторам составляют:

- 1. по концентрации: $E_{HHI}(H_{stat}) = -1.2\%$,
- 2. по активам иностранных банков: $E_{FASS}(H_{stat}) = 0.2\%$.

Стабильность банковской системы VS макроэкономика (№1)

1. Способ измерения стабильности банковской системы: Z-stat

В Roy (1952) предложен подход к определению финансовой стабильности предприятия (банка). Суть: измерение вероятности того, что возможный нормированный убыток банка i (банковской системы страны i) превзойдет его (ее) нормированный собственный капитал.

Неравенство Чебышева $P\{x-E(x)>\varepsilon\} \le \frac{Var(x)}{\varepsilon^2}$ формализует данный подход в случае

$$x = ROA_{i,t}$$
 и $\varepsilon = E(ROA_{i,t}) + \frac{EQ_{i,t}}{A_{i,t}}$.

$$P\left\{ROA_{i,t} < -\frac{EQ_{i,t}}{A_{i,t}}\right\} \le \frac{Var\left(ROA_{i,t}\right)}{\left(E\left(ROA_{i,t}\right) + \frac{EQ_{i,t}}{A_{i,t}}\right)^2} \equiv \frac{1}{Z_{i,t}^2}$$

где $\frac{EQ_{i,t}}{A_{i,t}}$ - отношение собственного капитала к активам; $E(ROA_{i,t})$ и $Var(ROA_{i,t})$ -

скользящие среднее и дисперсия ROA за последние несколько периодов.

Уровень конкуренции (H-stat) – существенный параметр стабильности банковской системы (Z-stat) наряду с такими параметрами, как наличие института страхования депозитов населения и барьеров для входа иностранных банков

Стабильность банковской системы VS макроэкономика (№2)

		Прямая гипотеза (Но))	Обратная гипотеза (H _s	lt)		
Число лагов	Тестирование набора гипотез ("+" - принятие, "-" - отклонение)	Темпы прироста реального ВВП не влияют по Гренжеру на стабильность банковской системы		Стабильность банковской системы не влияет по Гренжеру на темпы прироста реального ВВП		Число наблюдений	
1	F-Stat	3.072		0.019	+	20	
1	Prob.	0.098	,	0.891	-	20	
2	F-Stat	0.509	+	5.555		19	
2	Prob.	0.612	-	0.017	-	19	
3	F-Stat	0.773	+	4.762		18	
	Prob.	0.533	•	0.023	_	10	

Вывод: динамика реального ВВП является причиной по Гренжеру стабильности банковской системы

	Порядок интегрируемости	Критический уровень	Число значимых лагов
H-stat	I(1)	10%	0
CR₃	I(1)	10%	0
Z-stat	I(1)	10%	0
ln(S.DBIVAL)	I(1)	10%	1
Δln(GDP_REAL2007_SA)	I(1)	10%	0

Стабильность банковской системы VS макроэкономика (№3)

Зависимая переменная	Z-stat				
Модель	Модель №1 «Влияние ВВП на стабильность банков»		Модель №2 «Влияние волатильности курса рубля на стабильность банков»		
Факторы	оценки коэф-ов	p-value	оценки коэф-ов	p-value	
Δln(GDP_REAL2007_SA)	2.681	0.0046			
In(S.DBIVAL)			-4.233	0.0000	
H-stat	29.439	0.0899	21.008	0.1002	
CR ₃ (-1)	-2.150	0.0234	-1.640	0.0311	
D2007Q2	10.070	0.0336			
С	76.052	0.0761	57.184	0.0886	
R_{adj}^2	0.653		0.752		
Число наблюдений	21		21		
Fisher-stat	10.404	0.0002	21.205	0.0000	
DW-stat	1.843		2.367		
Breusch-Godfrey LM Stat:	1.885	0.7568	5.694	0.2232	

Стабильность банковской системы VS макроэкономика (№4) (прогноз в рамках модели №1)

		2010		«Эластичность»
	2009			стабильности
	(факт)	базовый прогноз	имитация	банков по ВВП
ВВП в ценах 2007 (сезонность снята)	32253	32920	33754	2.5%
Z-stat	3.96	16.19	18.87	16.6%

имитация: увеличение ежеквартальных темпов прироста ВВП на 1 п.п. по сравнению с соответствующими базовыми значениями

Основные выводы

 Для российской банковской системы применим как статический, так и динамический подход к оцениванию уровня конкуренции в рамках методологии Панзара-Роуза. Результаты реализации обоих подходов говорят об одном: банковская система устойчиво находится в состоянии монополистической конкуренции.

Индикатор уровня конкуренции (H-stat) составляет в среднем за 2004-2009 гг. 0.697 в статическом подходе и 0.516 в динамическом подходе.

С течением времени наблюдается ужесточение конкуренции в целом по банковской системе.

При этом, в группе крупных банков (с активами более 50 млрд. руб.) уровень конкуренции существенно выше, чем в группе мелких (с активами от 1 до 10 млрд. руб.) и сверхмелких банков (с активами менее 1 млрд. руб.), что тесно согласуется с результатами как предшествующих российских, так и зарубежных исследований.

Кризис 2008-2009 гг. привел к значительному снижению уровня конкуренции – с 0.84 в 3 кв. 2008 г. до 0.67 в 4 кв.
 2009 г.

Одна из важных причин: в кризис крупнейшие банки привлекали менее дорогие пассивы (субординированные кредиты ВЭБа и беззалоговые кредиты ЦБ), чем все остальные банки (депозиты населения – под завышенные ставки)

Основными факторами конкуренции являются концентрация банков (-), динамика активов дочерних банков нерезидентов (+) и соотношение процентных доходов и процентных расходов банков (-)

При этом, в рамках модельных расчетов, уровень конкуренции более чувствителен к уровню концентрации (эластичность -1,2%), чем к «иностранцам» (эластичность +0,2%) и «эффективности расходов» (эластичность -0.3%)

- Подтверждена концепция «competition-stability», в рамках которой усиление конкурентного уровня ведет к повышение стабильности банковской системы
- Вероятнее всего, динамика реального ВВП является причиной стабильности банковской системы, чем стабильность причиной ВВП, в соответствии с тестом Гренжера.
- Основными факторами стабильности банковской системы являются:

(банковские факторы) конкуренция и концентрация

(макроэкономические факторы) динамика реального ВВП и стоимость бивалютной корзины

- 1. положительное влияние динамики реального объема ВВП на стабильность банковской системы сильнее, чем отрицательное влияние на нее концентрации банков
- 2. наиболее сильное положительное влияние на стабильность банковской системы оказывает именно уровень конкуренции
- 3. отрицательное влияние волатильности курса на стабильность банковской системы существенно сильнее, чем положительное влияние на нее конкуренции

СПАСИБО ЗА ВНИМАНИЕ!